Mathworlds

Share this post

How We Set Math Class up to Fail

danmeyer.substack.com

How We Set Math Class up to Fail

Disintegration by design.

Dan Meyer
May 26, 2023
18
12
Share

Here is a video where some kids empty a cylinder of popcorn into exactly three cones with the same height and radius, demonstrating that the volume of the cone is one third the cylinder’s.

An image of kids holding three cones of full of corn kernels next to a cylinder.

Here is an example problem from a textbook, where students use that relationship to find a cone’s volume.

A word problem involving the volume of cones.

One reason why people dislike math.

These are two ways of knowing the same thing—one concrete, the other abstract. One you can hold in your hand. The other you can only hold in your head. 

They are both valuable in different ways, but the explicit goal of math class is to move students away from the concrete to the abstract, from the stuff you can hold to the stuff you can count to the stuff you can represent with a number and then a variable and then functions of variables. That’s the direction of math learning in every formal math education system I’m aware of.

There are people in this world who see straight through the corn in the textbook. They look at the problem and don’t think of the kernels you hold in your hand. They see a cone, its diameter, its height, the question, and they know what they’re going to do. These people make up a small percentage of the world’s population and a large percentage of the world’s math professionals.

A much larger group of people, one which includes most of the world’s math students tends to really dislike it when they are asked to disintegrate themselves, to separate and even forget the part of them that knows what corn kernels feel like when they run through your hands.

One way teachers engage students in math.

Teachers who are able to engage their students in the study of math tend to have the same skill: they can help students move up and down this ladder of abstraction. 

An image of the abstraction ladder with the corn at the bottom and the word problem at the top.

Those teachers help students preserve a connection to concrete knowledge even while developing fluency with abstract knowledge. They help students reintegrate themselves in a discipline that is designed for disintegration.

Hayakawa described this as operating “on all levels of the abstraction ladder”:

It is obvious, then, that interesting speech and writing, as well as clear thinking and psychological well-being, require the constant interplay of higher-level and lower-level abstractions, and the constant interplay of the verbal levels with the nonverbal (“object”) levels. [..] The work of good novelists and poets also represents this constant interplay between higher and lower levels of abstraction. [..] The interesting writer, the informative speaker, the accurate thinker, [the effective math teacher? -dm] and the sane individual operate on all levels of the abstraction ladder, moving quickly and gracefully and in orderly fashion from higher to lower, from lower to higher, with minds as lithe and deft and beautiful as monkeys in a tree.

The same is true of teaching math. But in math class, you’ll often find what Wendell Johnson described as “dead-level abstracting”—people unable to operate at more than one rung of the ladder. They just live there.

This is all windup to say: Bowman Dickson is operating along the entire ladder with this math problem here.

Image of a cone that is 2/3 full and the same cone flipped over.

Notice how this problem, which Bowman floated on Twitter last week, connects both the concrete and abstract. It invites the student to work with the formula for volume while also imagining the cone flipping over and water sloshing from one end to the other. Bowman even drew it in a way that suggests a sensory experience of water! You kind of want to play with it, don’t you?

This, then, is the challenge that is unique to math or at least most intensely felt there: to realize that students come to class with concrete knowledge about the day’s math that is valuable and then to conceive of math instruction as the act of fortifying, rather than replacing it.

What Else?

My colleague Chris Nho alerted me to a Reddit thread where someone asked for YouTube channels or videos that can help us learn to teach math. The responses are almost 100% videos helping people learn math—explanatory videos. It occurs to me every now and again how easy it is to find videos on the internet helping us do lots of different things, but teaching is not really among them. 

Perhaps that’s the nature of the discipline—less visible to the eye than cooking an omelet or changing the cabin air filter in my car . But I’m interested in finding the limits of the medium. 

So here is a video that I haven’t seen before. Two knowledgeable teaching coaches discuss a teacher’s teaching as they watch it in real-time. (The teacher is me FWIW.) I’m curious if this is a model we should expand and develop.

Thanks for reading Mathworlds! Subscribe for free to receive new posts and support my work.

18
12
Share
12 Comments
Emelie Reuterswärd
May 26Liked by Dan Meyer

You should collect all your wisdoms in a book, Dan. Longing to read it!

And I loved watching the video of you teaching. So much to discuss! Something that I was thinking about afterwards was the habit we teachers have of asking students the answer to simple arithmetic questions, i.e. "What is 10 divided by 5?", while solving a problem (an equation/an inequality). I wonder if that runs the risk of actually overflowing the students' working memory (some of the students in the video seemed to struggle with even the simpler calculations), so that they don't have enough space in working memory to actually follow the argument. We're so used to asking those questions, as a means of checking if the students are with us. But for the students who do those calculations effortlessly, the question probably seems "stupid". And for the students who don't do them effortlessly, the question might deprive them of following the main ideas. What are your thoughts on this?

Expand full comment
Reply
1 reply by Dan Meyer
B. Looney
May 27Liked by Dan Meyer

There are instructional videos that demonstrate “best practices” in teaching math, but the reason you aren’t finding them easily on YouTube is that researchers who are known as leaders in this area only make them available by subscription. Some subscriptions are only available to higher ed institutions. If you look up Deborah Lowenstein Ball you’ll find some material on YouTube but the really good stuff is available only to subscribers or educators who attend her Teaching Works PD sessions. Folks gotta make a living!

Expand full comment
Reply
10 more comments…
Top
New
Community

No posts

Ready for more?

© 2023 Dan Meyer
Privacy ∙ Terms ∙ Collection notice
Start WritingGet the app
Substack is the home for great writing

Our use of cookies

We use necessary cookies to make our site work. We also set performance and functionality cookies that help us make improvements by measuring traffic on our site. For more detailed information about the cookies we use, please see our privacy policy. ✖